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1. Introduction

Definition 1.1. (Abstract) A groupoid is a small category of isomorphisms.

This means a group is a groupoid. Let’s think of it a bit like a group then.

Definition 1.2. (Concrete)
A groupoid is a set G with partially defined multiplication γ1γ2 and everywhere defined invo-

lutive operation γ ↦ γ−1, satisfying:

(1) Associativity: If γ1γ2 and (γ1γ2)γ3 are defined, then γ2γ3 is defined and (γ1γ2)γ3 =
γ1(γ2γ3)

(2) Existence of r, s: The range and source maps r(γ) = γγ−1, s(γ) = γ−1γ are always well
defined. If γ1γ2 are well defined, then γ1 = γ1γ2γ

−1
2 , γ2 = γ−11 γ1γ2.

Definition 1.3. Heuristic A groupoid is a generalisation of a group action. So we think of it
like a generalised dynamical system.

Notation: elements of the form γγ−1 are called units and the space of units is denoted G(0).
The space of composable pairs is denoted by G(2). We now give a key example- a transformation
groupoid.

Example 1.4. Let Γ↷X be a group acting by homeomorphisms on a topological space X. Then
we define the transformation groupoid Γ⋉X to be the set of pairs (g, x) ∈ Γ×X here composable
pairs are of the form (g, h(x))(h,x) and composition is given by (g, h(x))(h,x) = (gh, x). Here
s(g, x) = (1, x), r(g, x) = (1, g(x)) and the unit space is canonically identified with X.
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Note that we have many properties of actions translate into properties of the transformation
groupoid:

● So we think of groupoids as “acting on their unit space” in general.
● Notice that this means both an arbitrary topological space and an arbitrary group are

examples of groupoids. This is by taking the trivial action 1 ↷ X on an arbitrary space
X, or by taking the trivial action G↷ ⋆ on the one-point space.
● Many algebraic properties of such a groupoid correspond to analytic or geometric prop-

erties of an action.

Just like a rubiks cube is a good example of a group, the 15 puzzle is a good example of a
groupoid.

Example 1.5 (15 Puzzle). 15puzzle.netlify.app

This is because we can’t always compose moves, unlike a rubiks cube. This also means there
is fundamental differences here. Whilst god’s number for a rubiks cube is 20, it doesn’t exist for
a 15 puzzle. Another example would be the minus cube (popular russian game).

Example 1.6 (Path space). Another good example is the fundamental groupoid of a topological
space X. Consider the space of continious paths in X under homotopy equivalence. We see
paths f, f ′ are composable iff f(1) = f ′(0). f−1 Also, s(f) = Idf(0), r(f) = Idf(1). The map
ϕ ∶ G0 → X Idx ↦ x identifies the unit space with X. f−1 is going to be the path given by
t↦ f(1 − t).
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Example 1.7. Disjoint union of groups. Let us take G1,G2 to be groups. Then there disjoint
union G1 ∪G2 is a groupoid, where we can only compose elements from the same group.

Definition 1.8. (Isotropy Group) The isotropy group of a groupoid at some unit u ∈ G0 is the
group of all elements g ∈ G such that r(g) = s(g) = u. This is a group because all compositions
are well defined in this subspace (sufficient to be a group).

This is an important notion: note that the isotropy groups of the fundamental groupoid give
the fundamental group of a topological space. Otherwise, the isotropy groups of a disjoint union
of groups is those groups.

Example 1.9. (Equivalence relation groupoid) Let X be a set with an equivalence relation ∼.
We can make a groupoid from this:

● Objects are elements of X
● For any x, y ∈X, there is a single morphism (x, y) iff x ∼ y.
● (x, y)(y, z) = (x, z).

You are probably wondering why this has deep relevance to C∗-algebras and so many people
that are interested in C∗-algebras also care about groupoids. This is partly cultural– really
canonical examples from C∗ algebras seem to come from groupoids. In fact, my supervisor Prof.
Xin Li made such a statement precise back in 2020:

Theorem 1.10 (Li, 2020). Every classifiable C∗ algebra comes from a (might need to be twisted?!)
groupoid.

It’s also because the functor G → C∗r (G) oftentimes helps us compute the K - Theory, which
is what we use to classify C∗- algebras.
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